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Abstract
A digital observer is proposed for a linear dynamic system with a pcriodic disturbance. The observer
estimates the system-state with rejecting the effect of the periodic disturbance. A design method of a digital
servomechanism 1s also presented in which the output tracking to a reference signal and the disturbance
rejection can individually be treated. In this case the reference signal is not necessarily periodic. The relation
between the signal generated by the proposed compensator and the disturbance is further investigated. Simulation
results show the effectiveness of the design method.
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1. Introduction

When we apply a conventional observer to a linear dynamic system with a periodic
disturbance, the estimated system-state is inevitably affected by the distubance. The
estimated value always contains an estimation error. Since this case can be considered
a kind of estimation problem for a system with an unknown input, the observer proposed
for this problem?’ ?’is available. However, the systems to which we can apply the design
method are extremely restricted. Moreover, transforming a continuous-time system into
a discrete-time form by a suitable sampling process, the periodic disturbance vector in
the discrete-time system generally spans the space of the same dimension as that of
state space. Therefore, it is impossible to apply the theory of the unknown-input
observer to estimate the system-states. We propose a digital observer removing the
effect of the periodic disturbance as much as possible by turning the periodicity to
account. The theoretical evolution is based on the idea of repetitive control.®’ ~'?’

We further investigate a digital servomechanism disturbed by a periodic disturbance
applying the theoretical result obtained for the observer. It is well known as the
internal model principle that output tracking with no steady-state error can be attained
by adding the internal model of the exogenous signal generator in a servomechanism.'?
However, it is sometimes difficult to realize desirable transient performance if the
reference signal generator is inherently different from the disturbance generator. We
cannot easily add the internal model of the periodic disturbance generator in the
servomechanism to reduce the effect. If the internal model of this disturbance generator
is added with that of the reference signal generator, the transient error can
periodically appear for a long time whenever the reference signal nonperiodically varies.
We consider a design method in which we can separately treat the output tracking to a
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reference signal and the disturbance rejection. In addition, the relation between the
signal generated by the proposed compensator and the disturbance is discussed.

2. Discrete-time system expression

Consider the following continuous-time system:
i (A=A x{fH+BulthD g[1] | (La)

y=Cx [1] (1.b)
where x[t1E€ER, ultl€EFR, ylt1ER and q[t]ER’ (psm<n). q[t] is a periodic disturbance
with period [, i.e.

qlt+ll=q[1], 120 (2)

We assume that the pair (A.,D.) is controllable and the period ] is known.
The following discrete-time expression is derived by a sampling process of a sampling
period T, where the input is assumed constant between sampling instants.

x(i+1)=Ax(iy+ Bu(ip+d(i) 3.2)

yO=Cxti) @)
where

A=exp(A.T), B=[exp(A, 1)1 A;'B,, C=C, (3.c)
and

d(i) = [ exp(A,(T ~)D,gliT+ 71d7 @.d)

The discrete-time system (3) is assumed controllable and observable. Since x (i)=x [iT]
and y(i)=yl[iT];i=0,1,2,---, (3) represents the exact dynamic behavior of (1) at
sampling instants. However, since ¢[t] cannot be measured, it is impossible to compute
(3.d). In addition, the disturbance q[t] can continuously vary between sampling instants
unlike the input u [t]. Therefore, although the dimension of the disturbance vector q[t]
is smaller than n,d (i);i=0,1,2,-:+ generally span an n-dimensional vector space. This
fact makes the perfect disturbance-rejection difficult in a digital control system.

We choose the sampling period such that (a period of the periodic disturbance)/(a
sampling period) is an integer L. Therefore, the relation d(i+L)=d (i);i=0,1,2,::"
holds. We introduce two types of expression of d (i) to treat the disturbance term d (i)
as exactly as possible in the design procedures proposed in this paper. The first
expression is based on an approximation method. Let q(i) be q[iT]. We can consider q(i)
to be equivalently the signal generated by the following discrete-time system:

Mi+1) = Pu(i) (4.2)
q@i)=[I, 0--- OJu(i) (4.b)

where g (i)éR"' and
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[0 1, © 0
0 0 I, :
P= o0 c RpprL (4.c)
0 0 -« 0 I,
1, 0 0 0

I ,ER**® denotes a unit matrix. We approximate q[iT+t]; 0<t <T with an extrapolation
function of q¢(i-j); i=0,1, - -, k. The function is given by

k

qiT+7)= Y 0,[iT+ 7] (i - j) (5)

Jj=0
where @;[t] is a k -th order polynomial equation of t such that
O;o# j,x=0]1,--k
2] l 1=(i-a)T = { oy § (6)
lL;oa=j

These w@;[t] ;i=0,1, ',k can.for example,be described by applying the Lagrange form.!*’
Substituting (5) into (3.d), the approximated value of (3.d) is derived as follows:

k
diy=> A, qi-j) )
j=0
where A;ER®*?; j=0,1, - -,k, which are the functions of A.,D. and T.
The second description is based on the periodicity of d (i) itself. Since d (i) is also
periodic,d (i) can be considered a signal generated by the following system:

nGi+1) =Pn(i) (8.a)
d(i=Dn(i) (8.b)
where 7 (i)ER*, DER"** and
01 0 - O]
0 0 1
P=|: .. 0 eR: (8.c)
00 - 01
1 0 .-~ 0 0

We cannot generally know the values of u(0) in (4) and 7(0) and D in (8). The
important point that should be remarked here is that d (i) can be considered the signal
obeying (4) and (7) or (8).

3. State observer rejecting a periodic disturbance

We investigate a digital observer rejecting a periodic disturbance. In this section
we assume that d (i) is given by (4) and (7). Therefore, the discrete-time system is
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approximately described by
k
*EEAR BN A g1 = J) (©)
=0

We introduce an observer with external inputs ¢ ;(i)€R”;j=0,1,- -,k given by
5 .
i(i+1)=Ax(i)—E(Cx(i)—}’(i))*'Bw(i)'l-;A,d’,(i) (10)
j

where € R*® and E€R**™ The estimation error is defined by
&(i) =x(i) — x(i) (1)
From (9), (10) and (11)

¢ .
§i+1) =(A~ECK () + A, (4D ~ai= ) (12)
j=

If the terms &;(i)ER”;j=0,1," -,k do not exist in (12), the error system (12) is
continueusly driven by q(i—j);i=0,1, .-, k. We now investigate how to generate ;(i) to
eliminate q(i—j);j=0,1,- -,k from (12). We introduce HER®*™ whose details will be
explained later. At present it is assumed that HC is of full rank and (HC,A) is an

observable pair. Let’s define

(i) =H(CX(i)- Y(i)) e R” (13)
equivalently
y(iy=HCE(i) (14)

Equations (12) and (14) are considered the error system with the output % (i) representing
the dynamic behavior of the estimation error.
We now add the following dynamic system in the above observer.

w(i+1) = Pw(i) — Fy (i) (15.a)
()= w,;, (i) ;j=01,- k (15.b)
where
w(i) =[wy (i) w; (i) - w] (i)]” e R?* 15.c)
and
F=[F T . FT T eRP™ (15.d)

P in (15,a) has already been defined by (4.c). Consequently, the digital observer proposed
here is shown by (10), (13) and (15). From (12), (14) and (15)

[},‘(i.+1)] =[A-EC Ag Ay A0 éj(i.)]_[A,, A, A, o]q(i) 16)
w(i+1) -FHC P w(i) 0
By defining
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$(i) =w(i) —q(i) « an
we obtain
E(i+1) [A—EC Ag Ay A0 é(i)] 5
(i+1)] L-FHC P ()

Therefore, if (18) is stable, £(i)—0 can be attained at i—o00, ie. Fi)—x(i) at i—oo,
This means that the system-state is estimated with rejecting the periodic disturbance by
the proposed observer. Hlowever, since the periodic disturbance (3.d) has been approximated
by (7), the estimation accuracy depends on the degree of this approximation. The sampling
period T and the order k of the extrapolation function arethe factors that we can
adjust to improve the degree of the approximation.

Let’s investigate the stability of (18). We represent E as

E=E,+EH (19)

where E,€R**® and EE€R"**. We can write the coefficient matrix of (18) as follows:

A Ay A AO| |E
- 20
[0 p ] [F][Hc 0] (20

where A=A-E,C. Since the system (3) is observerble, we can choose E, such that
{2:}N{Ax;}=¢ and 2A7;::;i=0,1,.- --,n are distinct, where (4.} is the set of the zeros
of 1-z%=0 and {A;} the set of the eigenvalues of A. Therefore, it is found that if
and only if

A AGA, A, o]) on

([HC o],[0 p

is an observable pair, the eigenvalues of (20) can be arbitrarily asigned by suitable
design of [ET FT]”. Consequently, there is H satisfying (21) if and only if

k
- J
A=zl Z;‘Afz =n+p forallze{A,} (22)
C 0
or equivalently )
A A, Ao Ay rAt
0O O 1, 0 0
the zeros of a system {[C 0], o . , : }n{A} =0 (23)
T Ip 0
o o0 - 0 117,]

where the notation {C, A, B} denotes the system with the output matrix C, the system
coefficient matrix A and the input matrix B. [See Appendix A] If the above condition
is valid for a given system, we can easily find H satisfying (21) (or equivalently (A 3)
and (A 4) in Appendix A) because almost all p Xm constant matrices are such ones.

If the disturbance q[t] is approximated by a step-wise function that is constant
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between sampling instants,i.e. d (i)=A.q(i),the condition (22) will be shown as follows:

A-zI A
rml{ CZ" O°]=n+p forall ze {A} (24)

This result means that the zeros of the transfer function matrix between the disturbance
q(i) and the output y (i) does not contain any z€E{A;).

4. Disturbance rejection in a servomechanism

In this section, we investigate a design method of a servomechanism whose output
tracks a reference signal with no steady-state error, together with the effective
rejection of the periodic disturbance. Let r (i)€R™ be the reference signal that is
not necessarily periodic. We introduce the following compensator to realize the output
tracking to the reference signal with no steady-state error in case of no periodic
disturbance.

W(i+1)=Ay (i B,(r(i)- () (25)

where v (i)eR” ,A,€R" ** and B,€R" **. This compensator includes the internal
model of the reference signal generator. By choosing the input u (i) as

u(i=Gv (i Kx(i) (26)
where GER™** and KE€R™ ", the total system is given by

x(i+1)=(A+BK)x(i+BGv(i) (27.2)

Wi+1)=-B.Cx(ir+AW(i)+Br(i) (27.b)

WI=Cx() | (21

under the assumptions of d (i)=0 and direct measurement of the state. It is assumed that
G and K are determined so that the total system is stable. The control law stated
above is well known as a basic design method to obtain the output tracking to r ( i) with
no steady-state error. If there is a periodic disturbance d (i), y (i) is inevitably
affected by d (i) since d (i) generally spans an n-dimensional vector space as explained
in §2. Although ¥ (i) estimated by the observer derived in the previous section is used,
this effect cannot be removed from y (i) because x (i) itself is affected by d(i). A
method to reject the effect is to add not only the intermal model of the reference
signal generator but also that of the periodic disturbance generator in(25). However, in
this case the transient error caused by a nonperiodic reference signalcan periodically
appear for a long time. To avoid this situation, a new compensation scheme is
investigated by applying the resuit obtained in the previous section.
We now introduce the following observer—-type compensator::

X(iH1 AR i -E(CX(i)-y(i)+Bu iy+Boo (i) (28)

where Z (i)ER® and EER***. We choose u (i) as
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u(i) =Gv(i)+ Kx(i) — ¢o () (29)
®o.(i)ER™ in (28) and (29), which is discussed later, is an external input introduced
to reject the periodic disturbance. Let

D=3 x()ER (30.2)
and

vV (i)=Cx()ry@) ER" (30.b)
Therefore, the following relation holds.

Ei+D)=(A-EC)&(i)-d(ir+ Boy(i) (31.2)

v (D=C&() | (31.b)

On the other hand, from (3),(25),(28),(29) and (30)

X (i+1)=(A+BK) % (i BGW(i}- EC&(i) (32.a)

v(i+ 1)=-B,CXx (iH+Ay(i)+B,r@iy+B,CE®i) (32.b)

(32.c)

Wiy=Cx(i)-CE(H

Consequently, the total system is described by (31) and (32). We can see that if C£(i)
—0 (i—00) is realized in (32), the effect of the periodic disturbance can gradually be
zeroed in (32). If (32) is stable, (32) finally behaves as the ideal servomechanism (27)
whose output y (i) tracks the reference signal with no steady-state error although the
controlled system is disturbed by the periodic disturbance. The stability of (32) is
always guaranteed by suitable design of G and K.

The remaining problem is to derive a compensation scheme attaining C&(i)—0 (i—00).
Since d (i) generally varies in an n-dimensional vector space, it is evident that £(i)-0
(i—00) cannot be realized whatever we choose in (31). We use the same dynamic system as
(15), where we choose k=0 and alter integer p into m. We add this system in (28).
Therefore,the observer-type compensator is augmented by this addition. From (15) and (31).

E(i+) A-EC B OfEW||-1.] .
= : (i) (33.2)
w(i+l) -FC P L w(i) 0
. 40)
(i) =[C O]|:W( i) (33.b)
It is easily derived that (33) can be stabilized by suitable design of E and F if and
only if
A-zI, B
c 0 =n+m forall ze{A} 34)

It is assumed that the system satisfies this condition. We now use (8) as the generator
of the periodic disturbance d (i) in this section. Then, from (8) and (33)
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Ei+1)| |[A-EC B 0 -D|&u)

wi+l)|=| =FC P 0 | w) 352)
nGi+1) 0 0 P Jln3)

&(l) | (35.b)
vy =[c 0 o] w(i)

n(i)

If (33) is stable, the unstable modes of (35.a) come from the eigenvalues of P. However,
wecan show that the modes corresponding to these eigenvalues {1:} are unobservable. [See
Appendix B] Therefore, we can see that if (33) is stable, ® (i)=C&(i)—0 (i—00) can be
attained.

5. Signals generated by the observer-type compensator in steady state

The servomechanism derived in the previous section works with the desirable
performance: output tracking and periodic-disturbance rejection. In this section, the
steady-state value of ¢,(i) that directly relates to the elimination of the periodic
disturbance is considered.

From (31)

w(z) =C(zI - A+ EC) ' (Bd,(z) —d(2)) (36)

where %(z).¢0(z) and d(z) are the z-transform of the sequences {®(i)}.{@o(i)}
and {d (i)}. Equation (36) is further described as

N W (2) = M(2)$(2) - M(2)d(z) (37

where N(z)ER™™[z], M(z)ER™*[z] and M(z)ER™=[z]. We can choose N(z)
and M(z) such that they are relatively left prime and M(z) is row proper. M(z) and
M(z) have the following forms:

M(z)=M,z" + Mlzv—l ++ M, (38.3)
M(z)=M,z" " +Mz2"* + -+ M,_, (38.b)
where M.€ R*=*"; i=0,1,:-+, and M.€ER™*"; i=0,1,"-,n-1 and v (§n-1) is the maximum

integer such that M,+0.
We define the signal sequences included in a repetitive period L as the following

vectors:
Do(DA[4(-1) 97(1-2) - ¢,7(-L)] er™ (39.2)
Apa[d(i-1) dT(i-2) - d"(i-L)] e R™ | (39.b)

where i L. Once % (i)=0 is attained at i—»00 as mentioned in the previous section, the
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following relation holds.
M®, (i) = MA(i) (40.a)
where ME R®"*=L and Nj€ R*"**" are given by
M, M, M, - M, 0 O 0]
0 M, M, M, - M, O 0
0O 0 M, M, M, - M, -~ 0
M= (40.b)
M, 0 0 0 M, M, M,
M, M, 0 O 0 M, M,
M, M, M, 0 0 0 M,]
and
Mn-v—l Mn—v Mn-l O 0 A‘\40 Mn-V—2
Mn—v-z Mn—v—l Mn-v An-l O ' O MO
An-v-3 Mn-v—Z Mn—v—l Mn-—-v Mn—l 0 0
M= I
O O MO M! Mn-v—l Mn-—v AZn—v+l
Mn—l O O A’\40 Ml An-—v—l Mn-v
L. AAln-v Mn—l O 0 MO Ml An-v—l-
(40.c¢)
Therefore, we finaly obtain
@, (i) =M'MA(J) (41)

if M is nonsingular. It is found that ¢,(i) is uniquely determined as a function of
the periodic disturbance in steady state. If D.=B. and qft] can be assumed constant
between sampling instants, i.e. d (i)=Bq[iT], ¢.(i)=¢q[iT] holds in steady state. In
this case, ¢.(i) is the estimation value of the periodic disturbance. The necessary and
sufficient condition for the nonsingularity of M is equivalent to the existence
condition (34) of the observer-type compensator.[See Appendix C]

6. Simulation results

Consider the system shown in Fig.1, in which two carts are coupled by a spring and a
damper. The carts can travel on the floor that periodically moves right and left. We
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assume that slip does not occur between the wheels and the floor. This system is modeled

by
% 0 1 0 0 x,] [o 0
X, _ -K,/M, —(Dy+D,)|M, K,[/M, -D, /M, x| {0 D,/M,
57 o 0 0 1 n|ol**l o
X, K,/M, D, /M, ~K,/M, —~(Dy+D,)IM,]1x,] (1 D, [M,
Yi=x1 and ya=Xx» (42)

where x. and x. are the position andthe velocity of the left cart, xs and x. those
of the right cart,h the position of the floor and uthe control input force. The values
of the parameters are given as the mass
Mi,=4 and M;=2(kg),the viscous friction

03
E 02
=01

ofF

1 1 1

% 10 yiy

15
Time (sec)

Fig.1 Two carts coupled by a spring and Fig.2 Movement of the floor
a damper on a moving floor

1 —_J—___ 1 F
) - Z/X
0 15 20 25 , s .
Time (sec) 0 5 . 10 Time (sec)ls 20 25

(a) (b)

Fig.3 Two patterns of position reference signals

r(m)
o
UL
r(m)
o

—

coefficients Do=10, D1=20 and D,=10(Ns/m) and the spring constant K,=100(N/m). The
purpose is to control the force so that the left cart (position y.) tracks the position
reference-signal r as precisely as possible under the circumstances that the carts are
shaked by the moving floor. The floor moves as shown in Fig.2. Two patterns of the
position reference-signals given in Fig.3 have been adopted. We have chosen the sampling
period 0.05(sec). To realize output tracking with no steady-state error to the position
reference-signal of a step function, a compensator : v(‘i+1)=v(i)+(r(l)—y(i))
corresponding to (25) has been introduced. The feedback gain matrices G and K in (6)
have been determined so that the poles of the servomechanism are assigned at 0.76, 0.77,
0.78, 0.79 and 0.80. We have chosen the gain matrices E in (8) and F in (13.b) such
that the performance index - J =10° x Zy/ 2( i)+ 2¢: (i) is minimized. Fig.4 and Fig.5 show
i=0 i=0

that the influence of the moving floor is gradually rejected and the same output
tracking property as that of the ideal servomechanism is finally realized.
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1 1 |
E 0 E 0
= L £ -
-1 a1+
1 —, 1 1 Il 1 1 1
1 T 20 5 10 15 20
> U’I‘imc (sec) > Time (sec)

(a) Conventional servomechanism (a) Conventional servomechanism

without the periodic disturbance without the periodic disturbance
1 1
o €o
o) =
K -1
: | NE 20 % 5 1o 15 70
0 5 10 Time (sec) S Time (sec)
(b) Conventional servomechanism (b) Conventional servomechanism
with the periodic disturbance with the periodic disturbance
1 1
E o E o
= =
-1+ -1
3 10 15 20 5 10 15 yi
Time (sec) Time (sec) 0
(c) Proposed sevomechanism (c) Proposed sevomechanism
with the periodic disturbance with the periodic disturbance
Fig.4 Output patterns to the reference in Fig.3(a) Fig.5 Output patterns to the reference in Fig.3 (b)

7. Conclusions

We have investigated digital observers and servomechanisms rejecting periodic
disturbances. Their own characteristics required as observers and servomechanisms: state
estimation and output tracking are not affected by the disturbance rejection. We can
arbitrarily specify the rates of convergence of the estimation errors and tracking
errors caused by the periodic disturbances. The order of the observer is the sum of
orders of the system and the disturbance generator. The observer-type compensator
introduced in the servomechanism has also the same order. If there is no periodic

distubance, the dynamic behavior of the observer and the servomechanism is absolutely
identical with that of conventional ones.

Appendix A

The observability of (21) can be confirmed by

A-zI A, A, - A O
ra 0 P-zI,, =n+(L+1)p (A1)
HC 0
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for all z€({{a:}U{Ai}}. By using the elementary column and row operations, condition

(A 1) is simplified as follows:

B k 7]

A-zl, DA ;7

j=0
Ly | (A 2)

rankk O I,-z71,|=n+p

HC 0

L i
for all z €{{a:}U{A:}}. (A 2) can further be simplified as follows:

A-z1
rank l: HC ]: n for all z €{2i}.i.e. the pair (HC,A) is observable (A3)

since rank(I ,-z" I ,)=p for all zE{A:} and

k
A-zl Y A7
¢ Zo: i =n+p forallz e{4,} (A4)

HC 0

since I,-z"I,=0 for all z€{A]}. Since the pair (C,A) is observable and rank[C7,
AT]=rank[CT,AT], there is always H satisfying (A 3). Consequently, we can see that
there is H satisfying (A 4) if and only if (22) is valid. It is evident that (23) is
equivalent to (22).

Appendix B

Note that (34) is satisfied and A:;i=1,2,'--,L are distinct since they are the zeros
of 1- z=0. If the mode corresponding to z €{A:} is observable,
A-EC-zI, B 0 -D
-FC P-zI, 0
0 0 P-zI,
C 0 0

=n+(m+1)L (A5)

for this z. Transforming the above matrix by the elementary row and column operations,
the condition is equivalently shown as follows:

rA —zI B -y Dz 0
c 0 o 0
rank 0 I, “ZLI... 0 0 =n+(m+1)L (A 6)
0 0 1-7* 0
. 0 0 0 I(m +1)(L-1)

where D=[D1Dj3:::D.]. Since [a-z"Ia=0 and |-z =0 for this z, (A 6) is not valid,
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ji.e. the rank is n+(m+1)L -1. Therefore, we can see that this mode is not observable.

Appendix C

Let v . be the highest degree occurring among the elements in the &th row of M(z).
Therefore, v =m?x{ v .}. We further define

M(z)=M,z" +Mz" "+ + M, (A7)
, which is described by
M(z)=diag[z"™ 2" - 2" 7" IM(2) (A8)

where M. €R™=; i=0,1,:+-,v. Since M, is nonsingular, we assume that M,=I. . This
can always be satisfied by premultiplying both sides of (37) by a suitable unimodular
matrix.

The coprimeness of detM(z) and z"'-! is equivalent to the condition (34). As seen
from the definition of M(z), the coprimeness of detM(z) and z'-1 is also equivalent
to that of detM(z) and z'-1.The necessary and sufficient condition of the coprimeness

of detM(z) and z*-1 is that

M3 o= =— —
r 0 Ml M2 Mv O O ]
0 M, A—{l M, M, o0 0
mL .
; O O Mo Ml MZ Mv € Rm (L +v)xm (L +v) (A 9)
I, 0 0 -I, 0 0
my 0 Im 0 0 —Im 0
N L O 0 I,.. 0 0 —J J
is nonsingular'?®’ . (A 9) is transformed into the following form:
F M Omlxmv |
I, © 0 -I, 0 0
0 I, O 0 -I, 0 - (A 10.2)
0 - 01, O 0 -I_]

by the elementary row operations, where
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(M, M, M, M, 0o o 0]
o M, M M, - M, 0 0
o o M M M - I 0
M= e R (A 10.b)
W M 0 0 o M, M, M,
M, - M 0 0 - o0 M H
M, M, M, 0 O 0 M,]

Therefore, if and only if M is nonsingular, so is (A 10.a). We can derive M defined by
(40.b)by interchanging the rows of M. Consequently, it is found that the nonsingularity
of M is equivalent to the condition (34).
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